Bronchoscopic Innovations for Diagnosis of Early Lung Cancer

Pierre Lane, PhD, PEng
Department of Integrative Oncology – Imaging Unit
BC Cancer Research Center

Canadian Association of Radon Scientists and Technologists (CARST) Conference
Vancouver, BC April 27, 2015
Lung Cancer Screening – Transformative Change in Lung Cancer Outcome

• Lung cancer is the most common cause of cancer death worldwide – >1.6 million deaths per year (>340,000 in China)

• Modest improvement in 5 year survival over the last two decades (<18%)

• Screening with low dose CT scan shown to reduce lung cancer mortality by 20% in high risk smokers
NLST - 20% Reduction In Lung Cancer Mortality With CT Screening

53,454 Participants
- 55 to 74 years;
- ≥ 30 pack-years
- Median follow-up 6.5 years
- 6.7% reduction all cause mortality

NLST. NEJM 2011; 365:395-409
Risk Prediction - PLCO_{M2012}

Predictors: Risk \uparrow
- age
- Δ race/ethnicity
- \downarrow education (SES)
- \downarrow BMI
- \uparrow personal history of cancer
- \uparrow family history of lung cancer
- \uparrow COPD
- \uparrow smoking status, \uparrow intensity, \uparrow duration & \downarrow quit-time

Predictive performance: in validation set - PLCO intervention arm AUC = 0.80

NEJM 2013;368:728-36
Improving Accuracy of PLCOm2012

• Adjust predictor coefficients for different age groups or ethnicity or adjust risk threshold (e.g. Ontario, Canada)

• Improve the prediction model (e.g. refine family history of cancer, personal history of cancer, alcohol use, biomass combustion, radon exposure, air pollution) – requires prospective study
Nodule Management Pathway
Lung-RADS Classification

<table>
<thead>
<tr>
<th>Lung-RADS Category</th>
<th>Baseline Screening</th>
<th>Subsequent Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No nodules; nodules with calcification</td>
<td>No nodules; nodules with calcification</td>
</tr>
<tr>
<td>2</td>
<td>Solid/part solid: <6 mm</td>
<td>Solid/part solid: <6 mm</td>
</tr>
<tr>
<td></td>
<td>GGN: <20 mm</td>
<td>GGN: <20 mm or unchanged/slowly growing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Category 3-4 nodules unchanged at ≥3 mo</td>
</tr>
<tr>
<td>3</td>
<td>Solid: ≥6 to <8 mm</td>
<td>Solid: New ≥4 to <6 mm</td>
</tr>
<tr>
<td></td>
<td>Part solid: ≥6 mm with solid component <6 mm</td>
<td>Part solid: New <6 mm</td>
</tr>
<tr>
<td></td>
<td>GGN: ≥20 mm</td>
<td>GGN: New ≥20 mm</td>
</tr>
<tr>
<td>4A</td>
<td>Solid: ≥8 to <15 mm</td>
<td>Solid: Growing <8 mm or new ≥6 and <8 mm</td>
</tr>
<tr>
<td></td>
<td>Part solid: ≥8 mm with solid component ≥6 and <8 mm</td>
<td>Part solid: ≥8 mm with new or growing solid component <4 mm</td>
</tr>
<tr>
<td>4B</td>
<td>Solid: ≥15 mm</td>
<td>Solid: New or growing and ≥8 mm</td>
</tr>
<tr>
<td></td>
<td>Part solid: Solid component ≥8 mm</td>
<td>Part solid: ≥6 mm with new or growing solid component ≥4 mm</td>
</tr>
<tr>
<td>4X</td>
<td>Category 3 or 4 nodules with additional features; imaging</td>
<td>Category 3 or 4 nodules with additional features; imaging</td>
</tr>
<tr>
<td></td>
<td>findings that increase suspicion of malignancy</td>
<td>findings that increase suspicion of malignancy</td>
</tr>
</tbody>
</table>

GGN = ground-glass nodule.

* Size is the average diameter rounded to the nearest whole number. Growth is a size increase ≥1.5 mm.

- Potentially avoid 46% to 52% follow-up chest CTs for false-positive CTs and reduce invasive diagnostic procedure by 23% compared to NLST
- lung-RADS missed 9.2% to 16.2% lung cancers compared to NLST – 44% ground-glass nodules <20 mm

PanCan Lung Nodule Malignancy Risk Calculator

Nodule Calculator

- **Age:**
- **Sex:** Male, Female
- **Family history of lung cancer?** No, Yes
- **Emphysema?** No, Yes
- **Nodule Size:** (Dimension in millimeters)
- **Nodule Type (choose only one):**
 1. Groundglass/nonsolid
 2. Semisolid
 3. Solid
- **Upper Lobe Location?** No, Yes
- **Spiculation?** No, Yes
- **Nodule Count:** Enter the total number of nodules.

AUC

<table>
<thead>
<tr>
<th></th>
<th>≤10 mm</th>
<th>GGN</th>
<th>Sub-solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>0.94</td>
<td>0.92</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Principle of OCT

OCT or Optical Coherence Tomography is the optical analogue to ultrasound imaging with:
- Higher resolution (10μm)
- Decreased penetration (2-3 mm)

OCT requires interferometric detection to achieve high axial resolution.
AF-OCT Extends Range of Examination with Improved Image Resolution

OCT probe diameter with plastic sheath = 0.9 mm
Histology Correlation - Pig Airways

Movat’s pentachrome vs. post-formalin ex vivo OCT imaging

- Low Scattering
- Cartilage (C)
- Smooth Muscle (SM)
- Epithelium (E)
- Lamina Propria (LP)
- High Scattering
Histology Correlation - Human Airways

Masson’s trichrome

post-formalin ex vivo OCT imaging

- Glands (G)
- Cartilage (C)
- Smooth Muscle (SM)
- Epithelium (E)
- Lamina Propria (LP)

Low Scattering

High Scattering
OCT Images of Bronchioles With and Without Surrounding Emphysema

15 μm axial resolution

Non-smoker normal

Smoker without emphysema

Mild emphysema

Moderate

Severe
3D Vascular Imaging Of Large & Small Blood

pullback 16mm @ 1mm/s
frame rate = 6.25fps, frame pitch = 160um
Doppler OCT Identifies Blood Vessels
Diagnostic Confirmation

Suspicious lesions on screening CT needs to be biopsied for diagnostic confirmation

Size of screening CT-detected lung cancers* (NLST)
- 60% to 78% ≤ 20 mm
- 20% to 35% ≤ 10 mm

CT-Guided Transthoracic Lung Biopsy (CT-TTLB)

<table>
<thead>
<tr>
<th>Diagnostic Yield (Nodule < 15mm)</th>
<th>Complication Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 - 80%</td>
<td>60 - 70%</td>
</tr>
<tr>
<td>15% (Pneumothorax)</td>
<td>1% (Pneumothorax)</td>
</tr>
<tr>
<td>1% (Bleeding)</td>
<td><1% (Bleeding)</td>
</tr>
<tr>
<td>0.4% (Severe/Fatal)</td>
<td></td>
</tr>
</tbody>
</table>

Transbronchial Biopsy (TBBx)

McWilliams, 2013; Wiener, 2011
Bronchoscopic Biopsy Safer But Accuracy Needs Improvement

- Fluoroscopy
- Electromagnetic Navigational Bronchoscopy (ENB)
- Radial Endobronchial Ultrasound (R-EBUS)
- Virtual Bronchoscopic Navigation (VBN)
- Guide Sheath (GS) Technique
Limitations Of Current Bronchoscopic Biopsy Methods

• Spatial accuracy of existing techniques for biopsy guidance is poor
 – Image guidance (R-EBUS) and sample collection are serial procedures (sample collection is blind)
 – Guide sheath can move and/or stretch 10’s of mm
 – ENB resolution is limited (tidal breathing, sensor registration)
Poor Image Resolution of R-EBUS Especially For Small Sub-solid Nodules

- Solid
- Semi-Solid
- Non-Solid

20% nodules sub-solid

No Doppler function to visualize blood vessels
Existing Biopsy Tools Are Unsuitable Except for End-on Tumor Bronchus Geometry
Changing Lung Cancer Care

• Early detection in high risk individuals improve outcome while keeping costs under control
• Shifting from palliative treatment to curative treatment
• Decrease symptom burden & hospital resource utilization
• Optimize lung cancer care pathway – reduce costs and improve outcome
Acknowledgements

BC Cancer Agency
Dr. Stephen Lam
Dr. Pierre Lane
Dr. Calum MacAulay
Dr. Annette McWilliams
Dr. Tawimas Shaipanich
Dr. Keishi Ohtani
Dr. Rosa Lisbona Lopez
Dr. Hamid Pahlevaninezhad
Myles McKinnon
Jennifer Campbell
Daryl Hyun
Jinbiao Xu

Vancouver General Hospital
Dr. John English
Dr. Richard Finley
Dr. John Yee

UBC Thoracic Imaging Group
Dr. Harvey Coxson
Dr. Miranda Kirby
Tara Candido